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we obtain the coefficients A,,i,,,, (j = 0, 1, 2,.. ., iv; nr= 0, I, 2, .,M) of the expansion (5.12) of the 
function &j(t)(i = 0. 1. 2. . . ., .V) in Laguerre poiynomials. Here N is determined by the order of 
the truncated system (4.81, and M is the number of terms retained in series (5.i2). 

Graphs of the function A,(t) are represented in Fig.2 for the values g=l.5, lo (the 
continuous, dashed, and dash-dot lines, respectively) for T = n/2, @ = 0.535, <I = 0.927 and diagrams 
of the contact stresses are displayed for different values of t at g= 5. Curve 1 corresponds 
to the value t= 0.1, curve 2 to the value t = 2.6; the stress diagrams for f= O.ci and 3.6 
(curve 3), for t= 1.1 and 3.1 (curve 4), and also for t= 1.6 and 2.1 (curve 5) agree practic- 
ally in pairs. 
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THEfUWPfiORESIS AND THE INTERACTION OF 
UNIFOF~LY HEATED SPHERI~L PARTICLES IN A GAS* 

A.YU. BORIS 

Translated by M.D.F. 

The thermophoresis of a uniformly heated spherical particle caused by the 
action of Branett temperature stresses is investigated, and the thermo- 
phoretic force is calculated for arbitrary temperature drops between the 
particle and the gas. An analogous problem was considered earlier /t/ in 
the linear approximation of a small temperature drop. 

The results obtained are used to estimate the nature and interaction force of widely 
spaced particles. It is shown that the gas motion caused by the temperature stresses can 
result in displacement of the system of differently heated particles. 

We consider a uniformly heated (cooled) spherical particle in a gas at rest at infinity 
whose temperature varies weakly along the x axis. The gas is regarded as a continuous medium. 
The temperature stresses evoke a pressure redistribution and gas motion around the particles 

/2/, which will result in the appearance of a thermophoretic force acting on the particle. 
We introduce dimensionless coordinates, temperature, density, viscosity, thermal conduct- 

ivity, velocity, pressure, and force as follows: 
a(2 Y I). F-F. P,P IL&* hcJ 

Here a is the radius of the sphere; when there is no temperature gradient at infinity, 
the subscriptm is ascribed to the appropriate gas parameters far from the sphere. The 

dimensionless continuity, energy, and momentum equations describing the flow around the 

particle /2/, and the boundary conditions can be written in the following form: 

*Prikl.Matem.Mekhan.,48,2,324-327,1984 



Vv = VV In T 

EvV In T = V (T”VT), E = 51% (x - i) Prlx, x = c&, 
T-'(vV)v +- Vll = II(') -t_ ,T**-* (VT)*JT + ~(YV In 
II = p + '/a (1 + Eo,) Ts-’ @VT) + a,T*g-‘(GT)* 
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(1) 
(2) 

T) V (T') (3) 

a, = 4, (so, f OS), cq = E (0’ + 0,/J), cr, = ‘i* ($0’ - ~I;o,) 

” = 0, T = T, = const (r = 4) (4) 

v - 0, T - i f E eos 0 (r - co), E = (VT), 4 i (5) 

Here Pr is the ~randtl number, x is the ratio of the specific heats (for a monatomic gas 

Pr=*&, and x= 'a 0' ). The density is deliminated by using the equation of state p= T-l. A 
power-law dependence of the transport coefficient on the temperature v=h=T’ is taken. 

Terms expressing viscous energy dissipation (negligibly small in the case Of slow flows) are 
neglected in the energy equation (2). The Barnett temperature stresses are taken into account 

in the momentum equation (3); o, and et are coefficients for the Barnett terms in the stress 
tensor (or = 3, og = o for I = 1, and o, = 2&S, o8 - 0.99 for E = a/*). 

Adhesion conditions for the velocity and temperature (4) are taken on the sphere surface. 
There is not the usual slip of the gas along the surface since T,=const. Second-order slip 
in the Knudsen number /3/ and temperature jumps on the surface are not taken into account 
since they yield small corrections of the order of the Knudsen number, to the main solution. 
Far from the sphere the gas is at rest, and there is a small temperature gradient (5). 

We note that when using the Navier-Stokes equations (there are no temperature stresses 
in (3)), the thermophoretic force is zero for these boundary conditions since classical thermo- 
phoresis occurs because of slip of the gas along the inhomogeneously heated particle surface 
(T, j; const). 

The thermophoretic force occurring because of the pressure redistribution caused by the 
temperature stresses was calculated in /l/ in the linear approximation in AT in the case of 
a weakly heated particle(AT= T,-- 1e$)(the gas motion was not taken into account since 
u = 0 (EAF), p = 0 (eAT)). 

Let us examine the case of arbitrary temperature drops (AT -i) when the gas motion must 
be taken into account. Near the sphere the small temperature gradient at infinity evokes only 
a perturbation of the spherically-symmetric temperature and pressure distributions. Consequ- 
ently, we seek a solution in the form of an expansion in E : 

T = T, (r) -+ aT, (r, 9) + . . . . v = v* fr) -+ era fr. 9) + .‘., II = (6) 

ll, (r) + en, (r, 8) + . . . 
T, = II+ (Tr:’ - i) r-‘]“@+1), Y. = 0, n, = n, (r) (7) 

Here (7) is the solution of (l)-(3) for a uniformly heated sphere when there is no temp- 
erature gradient at infinity (E=O). The temperature stresses are equilibrated by the pressure 
/2/ (the specific form of the dependence II,(r) is not required later), and there is no force. 

For r - E-l expansion (6) could become incorrect since the convective terms in the energy 
equation, discarded in obtaining T,in (7), become of the same order as the rest. From (5) and 
(7) we have an estimate of the decrease in T for large f: T= l.+O(e~)+O(r-1). 

To estimate the order of decrease in velocity at large distances from the particle we use 
the solution for a point force /4/. Since the force acting on the sphere is obviously proport- 
ional to E, we have the following estimate for velocities at large r: ~=o(e+). Therefore, 
we obtain for r-~-l V (T”AT) = 0 (r-*) + 0 (ET-~) = 0 (es) 

T-’ &VT) = 0 @r-J) + 0 (@r-l) = 0 (es) 

Since all the terms in the energy equation will be of the order of et for r-e-1, and 
expansion (6) is considered to terms of order e,ofexpansion (6)holds in the whole flow domain. 
Therefore, the boundary conditions for the perturbed quantities have t&e form 

vz = 0, T, = 0 (r = i), cg - 0, T, - reos 8 (r - cc) (8) 

The equations for v,,T,,lI, are obtained in an obvious way by substituting expansion (6) 
into (l)-_(3) and linearizing with respect to E. 

The form of the boundary conditions (8) enables the variables (~,,=f(r) ~0~8, cle = - g(r)sin~, 

n, t h (r) ccl.9 e + n(r). TI= To-" l~(~fe~sB-t-mf~)l) to be separated and enables the system for the per- 
turbed quantities to be reduced to a system of ordinary differential equations in f,g,&,7 with 
coefficients dependent on T, (an analgous system is presented in /5/). 
take the following form: 

The boundary conditions 

1=0, g=o, r=O (r=i) f-0, g-0, T-f (r-000) 

The appropriate boundary value problem was solved numerically by the method of orthogonal 
factorization /6i. The expression for the force acting on the particle can be obtained by 
integrating the stresses (including the temperature stresses too) over the surface of the 
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sphere 

Let us examine 

figure for two laws 

1) and ~=1/, (curve 

F = Y,.? lZT&‘(i) - h (I) + (SW, f- 0,) I”,_-fT,’ (1) z’ (f)J e 

the results of computations for the thermophoretic force shown in the 

of the temperature dependence of the transfer coefficients: s = 1 (curve 
Z), where the results obtained in /I/ are shown by dashes (F=&I(s~,-; 03) _. 

ATE). It is seen that a linear approximation in AT yields an almost exact value of the force 
even for AT-l. Taking account of the non-linearity is felt only for sufficiently high temp- 

erature drops, where the force for *= 1 grows in comparison to the linear approximation and 
diminishes for s=Vz. 

We will now use the results obtained to estimate the force and nature of the interaction 

between two uniformly heated particles separated by a large distance R. The particle radii 

are ai and the temperatures are T,i. A system of Cartesian coordinates Xi,pi,ei is associated 
with the centre of each particle (the *i axes are along the line connecting the centres of the 

particles), and the radius-vector Q. We shall assume that R~Q;, we take the radius of the 
first particle as the characteristic dimension (the particle radii are considered to be 
quantities of the same order of magnitude), and we introduce the small parameter cii = a, R. 

Let us examine the temperature field produced by the second particle in the neighbourhood 

of the first. Using solution (7), we obtain for the temperature field of the second particle 
in a coordinate system connected to the first particLe after expanding in series in e,: 

T,, = [I -j- (T;;,+?’ - 1) r*-ql’fs+l), rp = [(I? - qy -;- y,z + qj” (9) 
T,, = i -I- e&l, i eH*D,r, + 0 (e$). D* = Lip, -1 CT;;1 - l)/(s + 1) 

The second term in (9) yields a small addition to the uniform temperature field, which 

does not influence the force acting on the particle in the fundamental approximation, and the 

gas motion around the particle , caused by the inhomogeneity of the temperature distribution, 

and, consequently, it need not be taken into account later. The third term in (9), propor- 

tional to e,(*, yields a homogeneous temperature gradient directed along the line connecting 

the centres of the particles. The inhomogeneity of the temperature will result in gas motion 
around the first particle at velocities of the order of _errz, due to the action of the temp- 
erature stresses. The first particle causes an analogous inhomogeneity of order E,,: in the 

temperature field near the second particle, hence the temperature stresses will cause a flow 

with velocities of the same order near the second particle. We use the solution for a point 

force F=O(Q-1) /4/ to estimate the decrease in the velocity. Therefore, the velocity 
perturbation caused by the second particle in the neighbourhood of the first is of the order 
of e,if and can be neglected. 

Therefore, to terms O(e$) the problem of the action of 
foe a second particle on the first reduces to the problem examined 

above on the thermophoresis of the first particle in the 
temperature field of the second particle with a gradient 
determined by (9). Hence, by using the resutls obtained 
earlier for the magnitudes of the forces acting on the first 
and second particles, respectively, we have 

The function F(s. T,) is shown in the figure by solid 
lines for s=i and V-I/~. In the case of small temperature drops (ATi = T,,.: - l&it, the 
expressions for the forces are analogous to those obtained in /I/ from the electrostatic 
analogy (F,, = F,, = 4x (sot f 0,) AT,AT,op,R-*). For arbitrary pressure drops (ATi-- 1, AT,+ AT,) the 

gas flows caused by the temperature stresses around the particles can result in F,,+FF,,. 

Therefore, particles will not only be attracted to each other fAT,.AT,<O) or repulsed 

(A.T&.AT,>O) /I/ but can still be shifted as a whole. The direction of the shift will be 

determined by the relationship of F,, to F2,. Using the graphs presented in the figure for F, 

it can be shown that the sign of the displacement (a shift from the first particle towards 

the second is selected as positive) agrees with the sign of the expression CT.,., - l)(T,,,- 1) 

(Twz - Twd. The force causing this shift AF= F,,- Fst is due to the gas motion between part- 

icles, caused by the action of the temperature stresses. 

The author is grateful to V.S. Galkin, M.N. Koqan, and O.G. Fridlender for their interest. 
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ON SPATIALLY HOMOGENEOUS RELATION IN THE 
DOMAIN OF HIGH MOLECULAR VELOCITIES* 

A.A. ABPAMOV 

Asymptotic solutions oftbe.Boltsmann equation are studied for the spatially 
homogeneous relaxation of the distribution function in the domain of fast 
molecules, as well as the evolution of the perturbations in the distribu- 
tion function in &he case of sherical scattering motion /l/. The problem 
was studied in the linear approximation in fZ/, where exact solutions of 
the linearized Boltzmann equation were obtained for a specified form of 
molecular collision cross-sections. 

Let us consider a spatially homogeneous gas composed of molecules, regarded as rigid 
spheres, We shall assume that at the initial instant we specify, on the range (&t. t) of 
velocities, 

F,, > c = (ZkTlm)"', AE = &z~ - &, 4 0 (c2&,) 

a spatially homogeneous perturbation of the distribution function e(e) relative to the 

Maxwell distribution fn = II (n@)-“‘exp (-p/c2), i.e. 1 = j0 + 0. We shall require that the follow- 
ing relation holds: 

f, = mar @(E) = oK+(E,.fj ti) 
(21,. t..) 

and we shall have to explain how this perturbation evolves with time. 
It was shown in /3, 4/ that the integral of elastic collisions J(f,f) exhibits the follow- 

ing asymptotic behaviour at large velocities E>>c: 

J (f, I) = S(f~‘f’-_j~l)~ri;d~r, c- I e, - &I (2) 

since the fast molecules (59-p) collide mainly with the "thermal" molecules moving with veloc- 
ity of order c. 

We find that the collision integral (2) can be simplified for the problem in question. 
We shall denote the thermal molecules by X and the fast molecules by r. When the fast 

and thermal molecules (r,X) collide, we can have the molecules in the following states (F,x), 
(f, 0, (X, F). Analyzing the dynamics of molecular collisions, with the molecules treated as 
rigid spheres, we can show that when e E (&,, gnc) we can neglect, within the range of colli- 
sions (2), the "glancing" (I', X)-(F, X) and "frontal" (r, X) -(X, P) collisions with an error 
of order 0 (c%‘&%), as 5 - 00 . 

Consider the oroddct 

fl'f' -= fwfo E w 6f,’ 
1 i- - 

w+f,' 
f,)’ +f.+1’1. 

(at’ = f’ - f*‘, af,’ = fx’ _ ;;,j 
” 01 1 

Using the estimates &~gO(&,), ?$;<O(&,), and (1) and remembering that when 
collisions of type g-,X)- (r,r) remain, 

~-CO only 
we reduce the collision integral (2) to the form (d 

is the diameter of the molecule) 
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